Solar System
This article is about the Sun and its planetary system. For other systems, see planetary system and star system.
Solar System
| |
The Sun and planets of the Solar System. Sizes are to scale. Distances not to scale.
| |
Age
|
4.568 billion years
|
Location
| |
System mass
|
1.0014 solar masses
|
Nearest star
|
Proxima Centauri (4.22 ly), Alpha Centauri system (4.37 ly)
|
Nearest known planetary system
|
Alpha Centauri system (4.37 ly)
|
Planetary system
| |
Semi-major axis of outer planet (Neptune)
|
30.10 AU (4.503 billion km)
|
Distance to Kuiper cliff
|
50 AU
|
No. of stars
|
1
Sun |
No. of planets
| |
No. of known dwarf planets
| |
No. of known natural satellites
| |
No. of known minor planets
|
620,276 (as of 2013-07-23)[4]
|
No. of known comets
|
3,218 (as of 2013-07-23)[4]
|
No. of identified round satellites
|
19
|
Orbit about the Galactic Center
| |
Inclination of invariable plane to the galactic plane
|
60.19° (ecliptic)
|
Distance to Galactic Center
|
27,000±1,000 ly
|
Orbital speed
|
220 km/s
|
Orbital period
|
225–250 Myr
|
Star-related properties
| |
Distance to heliopause
|
≈120 AU
|
Hill sphere radius
|
≈1–2 ly
|
The Solar System[a] comprises the Sun and its planetary system of eight planets, their moons, and other non-stellar objects.[b][c] It formed 4.6 billion years ago from the gravitational collapse of a giant molecular cloud. The vast majority of the system's mass is in the Sun, with most of the remaining mass contained in Jupiter. The four smaller inner planets, Mercury, Venus, Earth and Mars, also called the terrestrial planets, are primarily composed of rock and metal. The four outer planets, called the gas giants, are substantially more massive than the terrestrials. The two largest, Jupiter and Saturn, are composed mainly of hydrogen and helium; the two outermost planets, Uranus and Neptune, are composed largely of substances with relatively high melting points (compared with hydrogen and helium), called ices, such as water, ammonia and methane, and are often referred to separately as "ice giants". All planets have almost circular orbits that lie within a nearly flat disc called the ecliptic plane.
The Solar System also contains a number of regions populated by smaller objects.[b] The asteroid belt, which lies between Mars and Jupiter, is similar to the terrestrial planets as it mostly contains objects composed of rock and metal. Beyond Neptune's orbit lie the Kuiper belt and scattered disc, linked populations of trans-Neptunian objects composed mostly of ices. Within these populations are several dozen to more than ten thousand objects that may be large enough to have been rounded by their own gravity.[10] Such objects are referred to as dwarf planets. Identified dwarf planets include the asteroid Ceres and the trans-Neptunian objects Pluto, Eris, Haumea, and Makemake.[b] In addition to these two regions, various other small-body populations including comets, centaurs and interplanetary dust freely travel between regions. Six of the planets, at least three of the dwarf planets, and many of the smaller bodies are orbited by natural satellites,[d] usually termed "moons" after Earth's Moon. Each of the outer planets is encircled by planetary rings of dust and other small objects.
The solar wind, a flow of plasma from the Sun, creates a bubble in the interstellar medium known as the heliosphere, which extends out to the edge of the scattered disc. The Oort cloud, which is believed to be the source for long-period comets, may also exist at a distance roughly a thousand times further than the heliosphere. The heliopause is the point at which pressure from the solar wind is equal to the opposing pressure of interstellar wind. The Solar System is located within one of the outer arms of the Milky Way galaxy, which contains about 200 billion stars.
Discovery and exploration
Planets of the Solar System to scale. Jupiter and Saturn (top row), Uranus and Neptune (top middle), Earth and Venus (bottom middle), Mars and Mercury. If the Sun-Neptune distance were scaled to the length of a football or soccer field of about 100 meters long, the Sun would be less than 3 cm in diameter (about two-thirds that of a golf ball), the gas giants would all be less than 3 mm across (smaller than a BB pellet) and Earth's diameter and the other terrestrial planets would be less than 0.3 mm (smaller than a flea).
Main article: Discovery and exploration of the Solar System
For many thousands of years, humanity, with a few notable exceptions, did not recognize the existence of the Solar System. People believed the Earth to be stationary at the centre of the universe and categorically different from the divine or ethereal objects that moved through the sky. Although the Greek philosopher Aristarchus of Samos had speculated on a heliocentric reordering of the cosmos,[11] Nicolaus Copernicus was the first to develop a mathematically predictive heliocentric system.[12] His 17th-century successors, Galileo Galilei, Johannes Kepler and Isaac Newton, developed an understanding of physics that led to the gradual acceptance of the idea that the Earth moves around the Sun and that the planets are governed by the same physical laws that governed the Earth. Additionally, the invention of the telescope led to the discovery of further planets and moons. In more recent times, improvements in the telescope and the use of unmanned spacecraft have enabled the investigation of geological phenomena, such as mountains and craters, and seasonal meteorological phenomena, such as clouds, dust storms, and ice caps on the other planets.
Structure and composition
The orbits of the bodies in the Solar System to scale (clockwise from top left)
Solar System showing the plane of the Earth's orbit around the Sun in 3D. Mercury, Venus, Earth, and Mars are shown in both panels; the right panel also shows Jupiter making one full revolution with Saturn and Uranus making less than one full revolution.
The principal component of the Solar System is the Sun, a G2 main-sequence star that contains 99.86% of the system's known mass and dominates it gravitationally.[13] The Sun's four largest orbiting bodies, the gas giants, account for 99% of the remaining mass, with Jupiter and Saturn together comprising more than 90%.[e]
Most large objects in orbit around the Sun lie near the plane of Earth's orbit, known as the ecliptic. The planets are very close to the ecliptic, while comets and Kuiper belt objects are frequently at significantly greater angles to it.[17][18] All the planets and most other objects orbit the Sun in the same direction that the Sun is rotating (counter-clockwise, as viewed from above the Sun's north pole).[19] There are exceptions, such as Halley's Comet.
The overall structure of the charted regions of the Solar System consists of the Sun, four relatively small inner planets surrounded by a belt of rocky asteroids, and four gas giants surrounded by the Kuiper belt of icy objects. Astronomers sometimes informally divide this structure into separate regions. The inner Solar System includes the four terrestrial planets and the asteroid belt. The outer Solar System is beyond the asteroids, including the four gas giants. Since the discovery of the Kuiper belt, the outermost parts of the Solar System are considered a distinct region consisting of the objects beyond Neptune.
Most of the planets in the Solar System possess secondary systems of their own, being orbited by planetary objects called natural satellites, or moons (two of which are larger than the planet Mercury), or, in the case of the four gas giants, by planetary rings; thin bands of tiny particles that orbit them in unison. Most of the largest natural satellites are in synchronous rotation, with one face permanently turned toward their parent.
Kepler's laws of planetary motion describe the orbits of objects about the Sun. Following Kepler's laws, each object travels along an ellipse with the Sun at one focus. Objects closer to the Sun (with smaller semi-major axes) travel more quickly because they are more affected by the Sun's gravity. On an elliptical orbit, a body's distance from the Sun varies over the course of its year. A body's closest approach to the Sun is called its perihelion, while its most distant point from the Sun is called its aphelion. The orbits of the planets are nearly circular, but many comets, asteroids, and Kuiper belt objects follow highly elliptical orbits. The positions of the bodies in the Solar System can be predicted using numerical models.
Although the Sun dominates the system by mass, it accounts for only about 2% of the angular momentumdue to the differential rotation within the gaseous Sun. The planets, dominated by Jupiter, account for most of the rest of the angular momentum due to the combination of their mass, orbit, and distance from the Sun, with a possibly significant contribution from comets.
The Sun, which comprises nearly all the matter in the Solar System, is composed of roughly 98% hydrogen and helium. Jupiter and Saturn, which comprise nearly all the remaining matter, possess atmospheres composed of roughly 99% of those same elements. A composition gradient exists in the Solar System, created by heat and light pressure from the Sun; those objects closer to the Sun, which are more affected by heat and light pressure, are composed of elements with high melting points. Objects farther from the Sun are composed largely of materials with lower melting points. The boundary in the Solar System beyond which those volatile substances could condense is known as the frost line, and it lies at roughly 5 AU from the Sun.
The objects of the inner Solar System are composed mostly of rock,[28] the collective name for compounds with high melting points, such as silicates, iron or nickel, that remained solid under almost all conditions in the protoplanetary nebula. Jupiter and Saturn are composed mainly of gases, the astronomical term for materials with extremely low melting points and high vapor pressure such as molecular hydrogen, helium, and neon, which were always in the gaseous phase in the nebula Ices, like water, methane, ammonia, hydrogen sulfide and carbon dioxide, have melting points up to a few hundred kelvins, while their phase depends on the ambient pressure and temperature They can be found as ices, liquids, or gases in various places in the Solar System, while in the nebula they were either in the solid or gaseous phase. Icy substances comprise the majority of the satellites of the giant planets, as well as most of Uranus and Neptune (the so-called "ice giants") and the numerous small objects that lie beyond Neptune's orbit. Together, gases and ices are referred to as volatiles
Distances and scales
The distance from the Earth to the Sun is 1 astronomical unit (150,000,000 km). For comparison, the radius of the Sun is .0047 AU (700,000 km). Thus, the Sun occupies 0.00001% (10−5 %) of the volume of a sphere with a radius the size of the Earth's orbit, while the Earth's volume is roughly one million (106) times smaller than that of the Sun. Jupiter, the largest planet, is 5.2 astronomical units (780,000,000 km) from the Sun and has a radius of 71,000 km (0.00047 AU), while the most distant planet, Neptune, is 30 AU (4.5×109 km) from the Sun.
With a few exceptions, the farther a planet or belt is from the Sun, the larger the distance between it and the previous orbit. For example, Venus is approximately 0.33 AU farther out from the Sun than Mercury, while Saturn is 4.3 AU out from Jupiter, and Neptune lies 10.5 AU out from Uranus. Attempts have been made to determine a relationship between these orbital distances (for example, the Titius–Bode law),[32] but no such theory has been accepted. The images at the beginning of this section show the orbits of the various constituents of the Solar System on different scales.
A number of Solar System models on Earth attempt to convey the relative scales involved in the Solar System on human terms. Some models are mechanical—called orreries—while others extend across cities or regional areas.[33] The largest such scale model, the Sweden Solar System, uses the 110-metre (361-ft) Ericsson Globe in Stockholm as its substitute Sun, and, following the scale, Jupiter is a 7.5-metre (25-foot) sphere at Arlanda International Airport, 40 km (25 mi) away, while the farthest current object, Sedna, is a 10-cm (4-in) sphere in Luleå, 912 km (567 mi) away.
If the Sun–Neptune distance is scaled to the length of a football or soccer pitch of about 100 metres, then the Sun is about 3 cm in diameter (roughly two-thirds the diameter of a golf ball) at one goal line with the gas giants all smaller than about 3 mm and Neptune found at the opposite goal line. Earth's diameter along with the other terrestrial planets would be smaller than a flea (0.3 mm) at this scale.
ไม่มีความคิดเห็น:
แสดงความคิดเห็น